Nucleotides and Nucleosides: Direct Route to Condensed Pyridinethione Carbocyclic Nucleosides Related to 3-Deazauridine

Galal E. H. Elgemeie, ${ }^{*} \dagger^{\boldsymbol{a} a}$ Adel M. E. Attia, ${ }^{\boldsymbol{b}}$ Dalia S. Farag c and Sherif M. Sherif ${ }^{d}$
${ }^{a}$ Chemistry Department, Faculty of Science, Cairo University (Bani Suef Branch), Bani Suef, Egypt
${ }^{\text {b }}$ Chemistry Department, Faculty of Education, Tanta University (Kafr El-Sheikh Branch), Egypt
${ }^{c}$ National Research Centre, Dokki, Cairo, Egypt
${ }^{d}$ Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

A novel synthesis of condensed pyridinethione carbocyclic glycosides utilizing pyridine-2(1H)thiones and α-bromoglucose or α-bromogalactose tetraacetate as starting components is described.

Deazauridine, a pyrimidine nucleoside analogue that is an effective antitumour agent, must be activated to the di- and triphosphates (deazaUDP and deazaUTP) in order to exert its cytotoxic effects. 3-Deazauridine 5^{\prime}-triphosphate, an active form of this antimetabolite, is a potent inhibitor of CTP synthetase (phosphocholine cytidyltransferase). DeazaUTP is a competitive inhibitor of this enzyme with respect to UTP. DeazaUDP is an inhibitor of ribonucleotide reductase activity. The net result of the inhibition at these sites is that the cells become deficient in cytidine and deoxycytidine nucleotides, causing inhibition of both R NA and DNA synthesis. ${ }^{1}$ As part of our program directed towards the development of new, simple and efficient procedures for the synthesis of antimetabolites, ${ }^{2-6}$ we report here the results of our investigation into the utility of the reaction of our previously reported pyridine-2(1H)thiones 3^{7} with α-halogeno sugars for the synthesis of 3deazapyrimidine glycosides. As far as we know this is the first coupling reaction of this type to be reported for pyridine- $2(1 H)$ thiones. Compounds 3 were prepared by the reaction of 3 -aryl-2-cyanothiopropenamide 1 with cycloalkanones 2 in boiling ethanol containing catalytic amounts of piperidine (Scheme 1). Compounds 3 reacted with 2,3,4,6 tetra- O-acetyl- α-D-glucoand -galacto-pyranosyl bromides 4 in the presence of aq potassium hydroxide to give the corresponding N -glucosides 5a-k and N-galactosides $\mathbf{5 1 - s}$, respectively. When compounds $\mathbf{1}$ were subjected to the reaction with bromides 4 and cycloalkanones $\mathbf{2 a - c}$ in the presence of aq. potassium hydroxide, the corresponding pyridine-2-thione glycosides 5 were obtained. These compounds were shown to be the same as those obtained from the reaction of pyridine-2-thiones $3 a-i$ with bromides 4 . The structure of compounds 5 could be established and confirmed for the reaction products on the basis of their elemental analysis and spectral data (UV, IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS). Analytical data for compound $\mathbf{5 g}$ revealed a molecular formula $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ (m / z 586). ${ }^{1} \mathrm{H}$ NMR spectroscopy was used to confirm this structure for the product. Thus, ${ }^{1} \mathrm{H}$ NMR spectroscopy revealed the presence of a doublet at $\delta 6.05$ with spin-spin coupling constant 10.54 Hz which corresponds to the diaxial orientation of $1^{\prime}-\mathrm{H}$ and $2^{\prime}-\mathrm{H}$ protons, indicating the presence of only the β-configuration. The other six protons of the glucopyranosyl ring resonated in the δ 3.945.50 region. The remaining four acetoxy groups appear as four singlets at $\delta 1.92-2.15$ and the four methylene protons of the aglycone resonate at $1.73,1.86,2.74$ and $2.98 .{ }^{13} \mathrm{C}$ NMR spectra were characterized by a signal at $\delta_{\mathrm{C}} 80.6$ corresponding to the $\mathrm{C}-1^{\prime}$ atom of the β-D-glucopyranose. The four signals appearing at δ_{C} 169.3-169.9 are due to the four acetoxy carbonyl carbon atoms, while the four signals at δ_{C} 20.2-20.3
\dagger Present Address: Chemistry Department, Faculty of Science, Qatar University, Doha, Qatar.
are attributed to the acetate methyl carbons. The four methylene carbon atoms of the aglycone resonated at $\delta_{\mathrm{C}} 21.3$, $21.8,26.5$ and 33.2. Another five signals at $\delta_{\mathrm{C}} 61.4,66.2,67.6$, 70.9 and 74.1 were assigned to $\mathrm{C}-6^{\prime},-4^{\prime},-2^{\prime},-3^{\prime}$ and -5^{\prime}, respectively. The IR spectrum of compound $\mathbf{5 g}$ was characterized by the absence of signal for an NH group and the presence of acetoxy carbonyl groups at $1755 \mathrm{~cm}^{-1}$. The UV spectra of compounds 5 confirmed that the reaction takes place at the nitrogen atom of the pyridine ring, leading selectively to the formation of N -glycosides and excludes substitution at the sulfur atom. Thus, whereas S-methyl derivative of compound 3 g shows two maxima at $\lambda 278$ and 346 nm , its N-glucosyl derivative exhibited three maximum absorption bands at $\lambda 266$, $335,444 \mathrm{~nm}$. Moreover, hydrolysis of compound 5 g with 9% aq. HCl afforded only the pyridin- $2(1 \mathrm{H})$-thione derivative 3 g as the unique product (a 2 -oxopyridine derivative is not formed) proving the existence of N -glycosides. The preparation of well crystalline 1-(β-D-glycopyranosyl)-3-cyanopyridine-2-thione derivatives 7a-p was achieved by removal of the blocking acetyl groups on treatment with methanolic ammonia at $0^{\circ} \mathrm{C}$. TLC of compounds 7 showed that a single unique compound was produced, and their structures were further confirmed by elemental analysis and spectral data (MS, IR, UV, ${ }^{1}$ H NMR, ${ }^{13} \mathrm{C}$ NMR). Thus, the analytical data for compound 7 n revealed a molecular formula $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S} \mathrm{~m} / \mathrm{z}$ 458. The IR absorption spectra of this compound showed a characteristic band at 3650-3200 due to the hydroxy groups of the galactose moiety. ${ }^{1} \mathrm{H}$ NMR spectroscopy was used to confirm this structure for the product. Thus, the ${ }^{1} \mathrm{H}$ NMR spectra revealed the presence of a doublet at $\delta 5.53\left(J_{1^{\prime}, 2^{\prime}} 10.18 \mathrm{~Hz}\right)$, indicating the presence of only the β-d-galactopyranose moiety. The other six protons, of the galactose, appear as a multiplet at $\delta 3.37-3.77$, while the four hydroxy groups of galactose moiety resonate at $\delta_{\mathrm{C}} 4.53-5.32$ (exchangeable by $\mathrm{D}_{2} \mathrm{O}$). ${ }^{13} \mathrm{C}$ NMR spectra were characterized by a signal at $\delta_{\mathrm{C}} 83.9$ corresponding to the $\mathrm{C}-1$ ' atom of β-D-galactopyranose. Another five signals, at $\delta_{\mathrm{C}} 60.2,68.2,68.6,74.9$ and 79.6 , were assigned to $\mathrm{C}-6^{\prime},-4^{\prime}$, $-2^{\prime},-3^{\prime}$ and -5^{\prime} of the galactose part, respectively.

In summary, we have achieved a regiospecific synthesis of interesting condensed pyridine-2-thione nucleosides by the reaction of condensed pyridine-2($1 H$)-thiones with α-halogeno sugars. These nucleosides can be utilized as an excellent starting material for the synthesis of other carbohydrate derivatives and for biological evaluation studies.

Experimental

All evaporations were carried out under reduced pressure at $40^{\circ} \mathrm{C}$. M.p.s are uncorrected. Aluminium sheets coated with silica gel $60 \mathrm{~F}_{254}$ (Merck) were used for TLC. Detection was effected by viewing under a short-wavelength UV lamp.

Scheme 1 Reagents and conditions: i, piperidine, EtOH , reflux; ii, aq. KOH ; iii, 2a-c, 4, aq. KOH ; iv, $\mathrm{NH}_{3}, \mathrm{MeOH}$

IR spectra were obtained (KBr disc) on a Pye Unicam Spectra1000. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Wilmad 270 MHz or on a Varian 400 MHz spectrometer for solutions in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ with SiMe_{4} as internal standard. J Values are given in Hz . Mass spectra were recorded on a Varian MAT 112 spectrometer. Analytical data were obtained from the Microanalytical Data Center at Cairo University.

1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}-T e t r a-\mathrm{O}-$ acetyl- β-d-gluco- and -galacto-pyranosyl)cycloalkane Ring-fused 4-Aryl-3-cyanopyridine-2-thiones 5. General Procedures.-To a solution of condensed pyridine$2(1 \mathrm{H})$-thione $3(0.01 \mathrm{~mol})$ in aq. potassium hydroxide $[0.56 \mathrm{~g}$, 0.01 mol , in distilled water $\left(6 \mathrm{~cm}^{3}\right)$] was added a solution of 2,3,4,6-tetra- O-acetyl- α-D-gluco- or -galacto-pyranosyl bromide $4(4.521 \mathrm{~g}, 0.011 \mathrm{~mol})$ in acetone $\left(30 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temperature until reaction was judged complete by TLC (30 min to 2 h). The mixture was evaporated under reduced pressure at $40^{\circ} \mathrm{C}$ and the residue was washed with distilled water to remove the potassium bromide formed. The product was dried, and crystallized from the appropriate solvent.

Compound 5a. Yellow crystals, m.p. $108^{\circ} \mathrm{C}$ (from EtOH) $(74 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 2220$ and $1755 ; \lambda_{\text {max }} / \mathrm{nm} 265,322,378$ and 394; $\delta_{\mathrm{H}} 1.94-2.14(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{AcO}), 2.05\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.74(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{CH}_{2}\right)$, $3.05\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right.$ and $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right)$,
$5.12\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 5.50\left(1 \mathrm{H}, \mathrm{t}, 2^{\prime}-\mathrm{H}\right), 6.15\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}\right.$ 9.98, $\left.1^{\prime}-\mathrm{H}\right)$ and $7.60(4 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$); m/z 617 (Found: C, 56.8; H, $4.9 ; \mathrm{N}, 4.8 . \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires $\mathrm{C}, 56.4 ; \mathrm{H}, 4.7 ; \mathrm{N}, 4.5 \%$).

Compound 5b. Yellow crystals, m.p. $165^{\circ} \mathrm{C}$ (from EtOH) $(76 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 2222$ and $1758 ; \delta_{\mathrm{H}} 1.90-2.20(12 \mathrm{H}, 4 \mathrm{~s}$, $4 \times \mathrm{AcO}), 2.08\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.85\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.05(2 \mathrm{H}, \mathrm{t}$, CH_{2}), 3.89 ($\mathbf{3} \mathrm{H}, \mathrm{s}$, OMe), 4.18 ($2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}$ and $1 \mathrm{H}, 5^{\prime}-\mathrm{H}$), $5.28\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 5.53\left(1 \mathrm{H}, \mathrm{t}, 2^{\prime}-\mathrm{H}\right), 6.11(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2}, 9.80,1^{\prime}-\mathrm{H}\right), 7.08(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$; $m / z 612$ (Found: C, 59.1; H, 5.1; N, 4.9. $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ requires $\mathrm{C}, 58.8 ; \mathrm{H}, 5.2 ; \mathrm{N}, 4.6 \%$).

Compound 5 c . Buff crystals, m.p. $127^{\circ} \mathrm{C}$ (from EtOH) (78%); $v_{\max } / \mathrm{cm}^{-1} 2215$ and $1750 ; \delta_{\mathrm{H}} 1.93-2.13(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{AcO})$, $2.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.78\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.96\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 4.05$ $\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right.$ and $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 5.10\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 5.03$ $\left(1 \mathrm{H}, \mathrm{t}, 2^{\prime}-\mathrm{H}\right), 6.08\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 9.89, \mathrm{I}^{\prime}-\mathrm{H}\right), 6.85(1 \mathrm{H}, \mathrm{m}$, furan $4-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{d}$, furan $3-\mathrm{H})$ and $8.10(1 \mathrm{H}, \mathrm{s}$, furan $5-\mathrm{H})$ $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)\right]$ 20.3-21.6 $(4 \times \mathrm{Me})$, 31.3-34.5 (3 \times CH_{2}), 61.7 (C-6'), 68.9 (C-4'), $70.6\left(\mathrm{C}-2^{\prime}\right), 74.9\left(\mathrm{C}-3^{\prime}\right), 76.7$ (C-5'), 80.5 (C-1'), 106.0 (C-3), 112.8 (CN), 115.8 (furan C-4), 117.6 (furan C-3), 132.1 (C-5), 135.7 (C-6), 139.4 (C-4), 146.7 (furan C-5), 158.3 (furan C-2), 169.2-170.4 ($4 \times \mathrm{CO}$) and 177.1 (C=S); $m / z 572$ (Found: C, 56.9; H, 5.1; N, 5.3. $\mathrm{C}_{2}{ }_{7} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ requires $\mathrm{C}, 56.6 ; \mathrm{H}, 4.9 ; \mathrm{N}, 4.9 \%$).

Compound 5d. Pale yellow crystals, m.p. $117^{\circ} \mathrm{C}$ (from

EtOH) $\left(73 \%\right.$); $v_{\text {max }} / \mathrm{cm}^{-1} 2215$ and 1750; m/z 632 (Found: C, 63.1; H, 5.3; N, 4.6. $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires C, 62.7; H, 5.1; N, 4.4\%).
Compound 5e. Pale yellow crystals, m.p. $187^{\circ} \mathrm{C}$ (from EtOH) (78%); $v_{\text {max }} / \mathrm{cm}^{-1} 2225$ and $1756 ; m / z 631$ (Found: C, 57.4; $\mathrm{H}, 4.7$; $\mathrm{N}, 4.7 . \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires $\mathrm{C}, 57.1 ; \mathrm{H}, 4.9 ; \mathrm{N}, 4.4 \%$).

Compound 5f. Pale yellow crystals, m.p. $126^{\circ} \mathrm{C}$ (from EtOH) (76%); $v_{\text {max }} / \mathrm{cm}^{-1} 2226$ and $1758 ; m / z 626$ (Found: C, $59.8 ; \mathrm{H}, 5.6$; $\mathrm{N}, 4.8 . \mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ requires C, 59.4; H, 5.4; N, 4.5\%).

Compound 5 g . Pale brown crystals, m.p. $170^{\circ} \mathrm{C}$ (from EtOH) $(74 \%) ; v_{\max } / \mathrm{cm}^{-1} 2222$ and $1755 ; \lambda_{\text {max }} 266,335$ and $444 ; \delta_{\mathrm{H}} 1.73$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}$), $1.86\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 1.92-2.15(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{AcO})$, $2.74\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.03\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right), 4.38$ ($\left.1 \mathrm{H}, \mathrm{t}, 5^{\prime}-\mathrm{H}\right), 5.24\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 5.39\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{H}\right), 5.48(1 \mathrm{H}, \mathrm{dd}$, $\left.2^{\prime}-\mathrm{H}\right), 6.05\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2} 10.54,1^{\prime}-\mathrm{H}\right), 6.78(1 \mathrm{H}$, dd, furan $4-\mathrm{H})$, $7.10\left(1 \mathrm{H}, \mathrm{d}\right.$, furan $3-\mathrm{H}$) and 8.03 (1 H , d, furan $5-\mathrm{H}$); $\delta_{\mathrm{C}} 20.2-20.3$ $(4 \times \mathrm{Me}), 21.3-33.2\left(4 \times \mathrm{CH}_{2}\right), 61.4\left(\mathrm{C}-6^{\prime}\right), 66.2\left(\mathrm{C}-4^{\prime}\right), 67.6$ (C-2'), 70.9 (C-3'), 74.1 (C-5'), 80.6 (C-1'), 102.5 (C-3), 112.1 (CN), 115.2 (furan C-4), 116.4 (furan C-3), 127.3 (C-5), 140.8 (C-6), 145.4 (C-4), 145.7 (furan C-5), 155.1 (furan C-2), 162.2 $(\mathrm{C}=\mathrm{S})$ and 169.3-169.9 ($4 \times \mathrm{CO}$); m/z 586 (Found: C, 57.6; $\mathrm{H}, 5.3 ; \mathrm{N}, 5.1 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ requires $\mathrm{C}, 57.3 ; \mathrm{H}, 5.1 ; \mathrm{N}, 4.8 \%$).

Compound 5h. Pale yellow crystals, m.p. $196^{\circ} \mathrm{C}$ (from EtOH) (72%); $v_{\text {max }} / \mathrm{cm}^{-1} 2220$ and $1755 ; m / z 646$ (Found: C, 63.5; H, 5.5; $\mathrm{N}, 4.6 . \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires $\mathrm{C}, 63.2 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.3 \%$).

Compound 5i. Yellow crystals, m.p. $156^{\circ} \mathrm{C}$ (from EtOH) $(79 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 2216$ and $1758 ; \delta_{\mathrm{H}} 1.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 1.58$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), $1.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 1.88-2.0(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{AcO})$, $2.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.0\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right), 4.29$ $\left(1 \mathrm{H}, \mathrm{t}, 5^{\prime}-\mathrm{H}\right), 5.13\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 5.28\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{H}\right), 5.43(1 \mathrm{H}, \mathrm{d}$, $\left.2^{\prime}-\mathrm{H}\right), 6.0\left(1 \mathrm{H}, \mathrm{d}, \mathrm{l}^{\prime}-\mathrm{H}\right)$ and $7.22-7.62(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 645$ (Found: C, 57.4; H, 5.3; N, 4.5. $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires C , 57.7; H, 5.1; N, 4.3\%).

Compound 5j. Yellow crystals, m.p. $167^{\circ} \mathrm{C}$ (from EtOH) $(75 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 2220$ and $1756 ; \delta_{\mathrm{H}} 1.28\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, $1.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 1.93-2.05(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{AcO}), 2.37(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $2.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.0\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right)$, $4.41\left(1 \mathrm{H}, \mathrm{t}, 5^{\prime}-\mathrm{H}\right), 5.15\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.38$ ($1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{H}$), 5.46 $\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 6.11\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right)$ and $7.17-7.72(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $m / z 659$ (Found: C, 58.6; H, 5.5; N, 4.6. $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{ClN}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires C, $58.3 ; \mathrm{H}, 5.3 ; 4.3 \%$).

Compound 5k. Yellow crystals, m.p. $142{ }^{\circ} \mathrm{C}$ (from EtOH) $(76 \%) ; v_{\max } / \mathrm{cm}^{-1} 2218$ and $1755 ; m / z 687$ (Found: C, 59.7; H, $5.9 ; \mathrm{N}, 4.4 . \mathrm{C}_{34} \mathrm{H}_{39} \mathrm{ClN}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires $\left.\mathrm{C}, 59.4 ; \mathrm{H}, 5.7 ; \mathrm{N}, 4.1 \%\right)$.

Compound 51. Yellow crystals, m.p. $178^{\circ} \mathrm{C}$ (from EtOH) $(75 \%) ; v_{\max } / \mathrm{cm}^{-1} 2222$ and 1750; m/z 617 (Found: C, 56.7; $\mathrm{H}, 4.5 ; \mathrm{N}, 4.8 . \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires C, $56.4 ; \mathrm{H}, 4.7$; N , 4.5%).

Compound 5m. Yellow crystals, m.p. $193{ }^{\circ} \mathrm{C}$ (from EtOH) (74%); $v_{\text {max }} / \mathrm{cm}^{-1} 2218$ and 1756; m/z 612 (Found: C, 58.5; $\mathrm{H}, 5.4 ; \mathrm{N}, 5.0 . \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ requires C, $\left.58.8 ; \mathrm{H}, 5.2 ; \mathrm{N}, 4.6 \%\right)$. Compound 5n. Buff crystals, m.p. $198^{\circ} \mathrm{C}$ (from EtOH) (76\%); $v_{\max } / \mathrm{cm}^{-1} 2224$ and 1755; m/z 572 (Found: C, 56.8; H, 4.7; $\mathrm{N}, 5.2 . \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ requires $\mathrm{C}, 56.6 ; \mathrm{H}, 4.9 ; \mathrm{N}, 4.9 \%$).
Compound 5o. Yellow crystals, m.p. $103{ }^{\circ} \mathrm{C}$ (from EtOH) $(74 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 2218$ and 1758; m/z 632 (Found: C, 62.9; $\mathrm{H}, 4.9 ; \mathrm{N}, 4.7 . \mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires $\mathrm{C}, 62.7 ; \mathrm{H}, 5.1 ; \mathrm{N}, 4.4 \%$).

Compound 5p. Pale yellow crystals, m.p. $212^{\circ} \mathrm{C}$ (from EtOH) $(78 \%) ; \nu_{\max } / \mathrm{cm}^{-1} 2222$ and 1758; m/z 631 (Found: C, $57.5 ; \mathrm{H}$, 5.1; $\mathrm{N}, 4.7 . \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires $\mathrm{C}, 57.1 ; \mathrm{H}, 4.9 ; \mathrm{N}, 4.4 \%$).

Compound 5q. Pale yellow crystals, m.p. $222{ }^{\circ} \mathrm{C}$ (from EtOH) $(77 \%) ; v_{\max } / \mathrm{cm}^{1} 2227$ and 1750; m/z 626 (Found: C, 59.6; $\mathrm{H}, 5.6 ; \mathrm{N}, 4.7 . \mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ requires C, $59.4 ; \mathrm{H}, 5.4 ; \mathrm{N}, 4.5 \%$).

Compound 5r. Pale brown crystals, m.p. $204{ }^{\circ} \mathrm{C}$ (from EtOH) $(77 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 2222$ and $1755 ; \delta_{\mathrm{H}} 1.73\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 1.84(2 \mathrm{H}$, $\mathrm{t}, \mathrm{CH}_{2}$), 1.92-2.14(12 H, $\left.4 \mathrm{~s}, 4 \times \mathrm{AcO}\right), 2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.98$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$) , $4.02\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right), 4.37\left(1 \mathrm{H}, \mathrm{t}, 5^{\prime}-\mathrm{H}\right), 5.24(1 \mathrm{H}$, $\left.\mathrm{t}, 4^{\prime}-\mathrm{H}\right), 5.38\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{H}\right), 5.47\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 6.04\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}\right.$
$\left.10.57,1^{\prime}-\mathrm{H}\right), 6.77(1 \mathrm{H}, \mathrm{m}$, furan $4-\mathrm{H}), 7.14(1 \mathrm{H}, \mathrm{dd}$, furan 3-H) and $8.02(1 \mathrm{H}, \mathrm{s}$, furan $5-\mathrm{H})$; δ_{C} 20.1-20.2 ($4 \times \mathrm{Me}$), 21.3-33.1 $\left(4 \times \mathrm{CH}_{2}\right), 61.4\left(\mathrm{C}-6^{\prime}\right), 66.3\left(\mathrm{C}-4^{\prime}\right), 67.6\left(\mathrm{C}-2^{\prime}\right), 70.9\left(\mathrm{C}-3^{\prime}\right), 74.1$ (C-5'), 80.7 (C-1'), 102.6 (C-3), 112.0 (CN), 115.3 (furan C-4), 116.5 (furan C-3), 127.3 (C-5), 140.8 (C-6), 145.7 (C-4), 152.7 (furan C-5), 155.1 (furan C-2), 162.2 ($\mathrm{C}=\mathrm{S}$), $169.2-169.8$ ($4 \times$ CO); $m / z 586$ (Found: C, 57.6; H, 5.2; N, 4.9. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ requires $\mathrm{C}, 57.3 ; \mathrm{H}, 5.1 ; \mathrm{N}, 4.8 \%$).

Compound 5s. Yellow crystals, m.p. $163^{\circ} \mathrm{C}$ (from EtOH) $(73 \%) ; \nu_{\text {max }} / \mathrm{cm}^{-1} 2218$ and $1758 ; \delta_{\mathrm{H}} 1.59\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 1.84$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 1.96-2.15(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{AcO}), 2.22(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $3.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.06\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right), 4.44(1 \mathrm{H}, \mathrm{t}$, $\left.5^{\prime}-\mathrm{H}\right), 5.24\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.41\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{H}\right), 5.49(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 6.14\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} ; 2^{\prime}} 10.66,1^{\prime}-\mathrm{H}\right), 7.27-7.69(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.08(3 \mathrm{H}, \mathrm{t}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 20.3(4 \times \mathrm{Me}), 21.5-32.9\left(4 \times \mathrm{CH}_{2}\right)$, 61.3 (C-6'), 66.2 (C-4'), 67.5 (C-2'), 70.9 (C-3'), 74.06 (C-5'), 80.5 (C-1'), 105.8 (C-3), 114.6 (CN), 123.9-132.9 (Ar carbons), $152.4(\mathrm{C}-6), 156.6(\mathrm{C}-4), 161.9(\mathrm{C}=\mathrm{S})$ and 169.3-169.9 ($4 \times \mathrm{CO}$); $m / z 646$ (Found: C, 63.4; H, 5.5; N, 4.7. $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires C, 63.2; H, 5.3; N, 4.3\%).

1-(β-D-Gluco- and-galacto-pyranosyl)cycloalkane Ring-fused 4-Aryl-3-cyanopyridine-2-thiones 7. General Procedures.-Dry gaseous ammonia was passed through a solution of a protected nucleoside $5(0.5 \mathrm{gm})$ in dry methanol $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for $c a$. 0.5 h , then the mixture was stirred at $0^{\circ} \mathrm{C}$ until reaction was judged to be complete by TLC ($2-6 \mathrm{~h}$). The mixture was evaporated under reduced pressure at $40^{\circ} \mathrm{C}$ to give a solid residue, which was crystallized from the appropriate solvent.

Compound 7a. Pale yellow crystals, m.p. $157^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})(88 \%)$; $\nu_{\text {max }} / \mathrm{cm}^{-1} 3600-3200$ and $2220, \delta_{\mathrm{H}} 2.03(2 \mathrm{H}, \mathrm{t}$, CH_{2}), $2.45\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.95\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.23-3.76(6 \mathrm{H}, \mathrm{m}$, $6^{\prime}-\mathrm{H}_{2}, 5^{\prime}-, 4^{\prime}-, 3^{\prime}-$ and $\left.2^{\prime}-\mathrm{H}\right), 4.51\left(2 \mathrm{H} \mathrm{t}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{OH}\right), 5.08$ ($1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{OH}$), 5.37 ($1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{OH}$), $5.73\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2}, 9.76\right.$, $\left.1^{\prime}-\mathrm{H}\right)$ and $7.65(4 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 22.4-34.7\left(3 \times \mathrm{CH}_{2}\right)$, $60.6(\mathrm{C}-$ $\left.6^{\prime}\right), 69.6$ (C-4'), 71.8 (C-2'), 76.6 (C-3'), 78.4 (C-5'), 81.5 (C-1'), 103.6 (C-3), 115.6 (CN), 128.7-133.4 (Ar carbons), 134.4 (C-5), 147.8 (C-6), 159.6 (C-4) and 163.4 (C=S); $m / z 449$ (Found: C, 56.5; $\mathrm{H}, 4.9 ; \mathrm{N}, 6.4 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 56.2 ; \mathrm{H}, 4.7$; N, 6.2%).

Compound 7b. Pale yellow crystals, m.p. $197^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})(86 \%) ; v_{\max } / \mathrm{cm}^{-1} 3600-3180$ and $2226 ; \delta_{\mathrm{H}} 2.02(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{CH}_{2}\right), 2.83\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.01\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.21-3.76(6 \mathrm{H}$, $\mathrm{m}, 6^{\prime}-\mathrm{H}_{2}, 5^{\prime}-4^{\prime}-, 3^{\prime}-$ and $\left.2^{\prime}-\mathrm{H}\right), 3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.44(2 \mathrm{H}, \mathrm{d}$, 2^{\prime} - and $\left.3^{\prime}-\mathrm{OH}\right), 4.98\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{OH}\right), 5.18\left(1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{OH}\right), 5.61$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2} \cdot 9.87,1^{\prime}-\mathrm{H}\right), 7.08(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $7.49(2 \mathrm{H}, \mathrm{d}$, ArH); $m / z 444$ (Found: C, $59.8 ; \mathrm{H}, 5.2 ; \mathrm{N}, 6.6 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 59.5 ; \mathrm{H}, 5.4 ; \mathrm{N}, 6.3 \%$).

Compound 7c. Pale yellow crystals, m.p. $261^{\circ} \mathrm{C}$ (from MeOH) $(89 \%) ; v_{\max } / \mathrm{cm}^{-1} 3640-3180$ and $2228 ; \delta_{\mathrm{H}} 2.09\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.78$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.96\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.20-3.67\left(6 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}, 5^{\prime}-, 4^{\prime}-\right.$, 3^{\prime} - and $\left.2^{\prime}-\mathrm{H}\right), 4.41\left(2 \mathrm{H}, \mathrm{t}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{OH}\right), 5.00\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{OH}\right)$, $5.21\left(1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{OH}\right), 5.58\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \cdot 2^{\prime}} 9.84,1^{\prime}-\mathrm{H}\right), 6.81(1 \mathrm{H}, \mathrm{m}$, furan $4-\mathrm{H}), 7.34(1 \mathrm{H}, \mathrm{d}$, furan $3-\mathrm{H}$) and $8.1(1 \mathrm{H}, \mathrm{d}$, furan $5-\mathrm{H})$; $\delta_{\mathrm{C}} 22.4,31.2$ and $34.6\left(3 \times \mathrm{CH}_{2}\right), 60.7\left(\mathrm{C}-6^{\prime}\right), 69.6\left(\mathrm{C}-4^{\prime}\right), 71.9$ (C-2'), 76.7 (C-3'), 78.5 (C-5'), 81.4 (C-1'), 106.0 (C-3), 112.7 (CN), 115.4 (furan C-4), 117.6 (furan C-3), 135.7 (C-5), 145.7 (C-6), 146.6 (C-4), 147.0 (furan C-5), 159.4 (furan C-2) and 160.7 (C=S); m/z 404 (Found: C, 56.8; H, 5.2; N, 6.6. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 56.4 ; \mathrm{H}, 5.0 ; \mathrm{N}, 6.9 \%$).

Compound 7d. Pale yellow crystals, m.p. $179^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})(85 \%) ; v_{\max } / \mathrm{cm}^{-1} 3650-3200$ and $2220 ; \delta_{\mathrm{H}} 2.02(2 \mathrm{H}, \mathrm{t}$, CH_{2}), $2.58\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.06\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.18-3.96(6 \mathrm{H}$, $\mathrm{m}, 6^{\prime}-\mathrm{H}_{2}, 5^{\prime}-, 4^{\prime}-, 3^{\prime}-$ and $\left.2^{\prime}-\mathrm{H}\right), 4.48\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{OH}\right)$, $5.05\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{OH}\right), 5.26\left(1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{OH}\right), 5.63(1 \mathrm{H}, \mathrm{d}$, $J_{1^{\prime}, 2^{\prime}}, 9.93,1^{\prime}-\mathrm{H}$) and $7.56(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 464$ (Found: C, $65.0 ; \mathrm{H}, 5.4 ; \mathrm{N}, 6.3 . \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires C, 64.7; $\mathrm{H}, 5.2$; N, 6.0%).

Compound 7e. Pale yellow crystals, m.p. $223^{\circ} \mathrm{C}$ (from MeOH) (89%); $v_{\text {max }} / \mathrm{cm}^{-1} 3600-3150$ and 2220; m/z 463 (Found: C, 57.4; $\mathrm{H}, 5.2 ; \mathrm{N}, 6.3 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{5}$ S requires C, $57.1 ; \mathrm{H}, 5.0 ; \mathrm{N}, 6.1 \%$).

Compound 7f. Pale yellow crystals, m.p. $287^{\circ} \mathrm{C}$ (from MeOH) $(86 \%) ; v_{\max } / \mathrm{cm}^{-1} 3640-3180$ and $2220 ; m / z 458$ (Found: C, 60.6; $\mathrm{H}, 5.9 ; \mathrm{N}, 6.4 . \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 60.3 ; \mathrm{H}, 5.7 ; \mathrm{N}, 6.1 \%$).

Compound 7 g . Pale yellow crystals, m.p. $220^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})(84 \%) ; v_{\max } / \mathrm{cm}^{-1} 3630-3160$ and $2216 ; m / z 418$ (Found: C, 57.7; H, 5.5; N, 6.5. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires C, $57.4 ; \mathrm{H}, 5.3$; $\mathrm{N}, 6.7 \%$).

Compound 7h. Pale yellow crystals, m.p. $215^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})(86 \%) ; v_{\max } / \mathrm{cm}^{-1} 3640-3150$ and $2215 ; m / z 478$ (Found: $\mathrm{C}, 65.6 ; \mathrm{H}, 5.6 ; \mathrm{N}, 6.1 . \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 65.3 ; \mathrm{H}, 5.4$; N, 5.9%).

Compound 7i. Pale yellow crystals, m.p. $247{ }^{\circ} \mathrm{C}$ (from MeOH) $(86 \%) ; v_{\max } / \mathrm{cm}^{-1} 3650-3200$ and $2216 ; \delta_{\mathrm{H}} 2.07\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right)$, $2.82\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.23-3.77\left(6 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right.$, $5^{\prime}-, 4^{\prime}-, 3^{\prime}$ - and $\left.2^{\prime}-\mathrm{H}\right), 4.55\left(2 \mathrm{H}, \mathrm{t}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{OH}\right), 4.99(1 \mathrm{H}, \mathrm{d}$, $\left.4^{\prime}-\mathrm{OH}\right), 5.39\left(1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{OH}\right), 5.60\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}, 10.1,1^{\prime}-\mathrm{H}\right)$ and 7.61 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z 449 (Found: C, 56.5; H, 4.5; N, 6.4. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 56.2 ; \mathrm{H}, 4.7 ; \mathrm{N}, 6.2 \%$).

Compound 7j. Pale yellow crystals, m.p. $209^{\circ} \mathrm{C}$ (from MeOH) (84%); $v_{\text {max }} / \mathrm{cm}^{-1} 3620-3180$ and $2215 ; m / z 444$ (Found: C, 59.7; $\mathrm{H}, 5.5 ; \mathrm{N}, 6.0 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 59.5 ; \mathrm{H}, 5.4 ; \mathrm{N}, 6.3 \%$).

Compound $7 \mathbf{k}$. Pale yellow crystals, m.p. $213^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})(86 \%) ; v_{\max } / \mathrm{cm}^{-1} 3600-3200$ and $2218 ; \delta_{\mathrm{H}} 2.09(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{CH}_{2}\right), 3.04\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 3.20-3.85\left(6 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}, 5^{\prime}-, 4^{\prime}-\right.$, $3^{\prime}-$ and $\left.2^{\prime}-\mathrm{H}\right), 4.57\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{OH}\right), 4.98\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{OH}\right)$, $5.38\left(1 \mathrm{H}, \mathrm{t}, 6^{\prime}-\mathrm{OH}\right), 5.64\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 9.77,1^{\prime}-\mathrm{H}\right), 6.84(1 \mathrm{H}$, m , furan $4-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{d}$, furan $3-\mathrm{H})$ and $8.08(1 \mathrm{H}$, dd, furan $5-\mathrm{H}$); $m / z 404$ (Found: $\mathrm{C}, 56.6 ; \mathrm{H}, 5.1 ; \mathrm{N}, 7.2 . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 56.4 ; \mathrm{H}, 5.0 ; \mathrm{N}, 6.9 \%$).

Compound 71. Pale yellow crystals, m.p. $173^{\circ} \mathrm{C}$ (from MeOH) $(83 \%) ; v_{\max } / \mathrm{cm}^{-1} 3600-3150$ and $2216 ; \delta_{\mathrm{H}} 2.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right)$, $2.78\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.08\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.21-3.94\left(6 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right.$, $5^{\prime}-, 4^{\prime}-, 3^{\prime}-$ and $\left.2^{\prime}-\mathrm{H}\right), 4.55\left(2 \mathrm{H}, \mathrm{t}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{OH}\right), 5.01(1 \mathrm{H}, \mathrm{d}$, $\left.4^{\prime}-\mathrm{OH}\right), 5.38\left(1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{OH}\right), 5.67\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}, 9.98,1^{\prime}-\mathrm{H}\right)$ and 7.73 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z 464 (Found: C, 64.9; H, 5.1; N, 6.4. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 64.7 ; \mathrm{H}, 5.2 ; \mathrm{N}, 6.0 \%$).

Compound 7 m . Pale yellow crystals, m.p. $275^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})\left(86 \%\right.$); $v_{\text {max }} / \mathrm{cm}^{-1} 3620-3200$ and $2218 ; m / z 463$ (Found: C, 57.3; $\mathrm{H}, 5.2 ; \mathrm{N}, 6.4 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 57.1 ; \mathrm{H}, 5.0$; $\mathrm{N}, 6.1 \%$).

Compound 7n. Pale yellow crystals, m.p. $273^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})(86 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3610-3180$ and $2216 ; \delta_{\mathrm{H}} 1.65(2 \mathrm{H}, \mathrm{t}$, CH_{2}), $1.82\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.92\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right)$, 3.37-3.77 ($6 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}, 5^{\prime}-, 4^{\prime}-, 3^{\prime}-$ and $\left.2^{\prime}-\mathrm{H}\right), 3.82(3 \mathrm{H}, \mathrm{s}$,

OMe), $4.53\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}-\right.$ and $\left.\left.3^{\prime}-\mathrm{OH}\right), 4.921 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{OH}\right), 5.32$ $\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{OH}\right), 5.53\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 10.18,1^{\prime}-\mathrm{H}\right), 7.09(2 \mathrm{H}, \mathrm{d}$, $\mathrm{ArH})$ and $7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 21.6-33.1\left(4 \times \mathrm{CH}_{2}\right), 55.1$ (OMe), 60.2 (C-6'), 68.2 (C-4'), 68.6 (C-2'), 74.9 (C-3'), 79.6 (C-5'), 83.9 (C-1'), 104.8 (C-3), 114.0 (CN), 126.9-129.6 (Ar carbons), $153.3(\mathrm{C}-5), 156.5(\mathrm{C}-6), 159.6(\mathrm{C}-4)$ and $161.2(\mathrm{C}=\mathrm{S})$; $m / z 458$ (Found: C, $60.4 ; \mathrm{H}, 6.0 ; \mathrm{N}, 6.4 . \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires C, 60.3; H, 5.7; N, 6.1\%).

Compound 7o. Pale yellow crystals, m.p. $238^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})(85 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3600-3180$ and $2215 ; \delta_{\mathrm{H}} 1.70(2 \mathrm{H}, \mathrm{d}$, CH_{2}), $1.82\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 2.68\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 2.92\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right)$, $3.34-3.75\left(6 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}, 5^{\prime}-, 4^{\prime}-, 3^{\prime}-\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 4.53\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{OH}\right), 4.94\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{OH}\right), 5.33\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{OH}\right), 5.49(1 \mathrm{H}$, $\left.\mathrm{d}, J_{1^{\prime}, 2^{\prime}} 10.19,1^{\prime}-\mathrm{H}\right), 6.76(1 \mathrm{H}$, m, furan $4-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{d}$, furan $3-\mathrm{H}$) and $8.0(1 \mathrm{H}$, d, furan $5-\mathrm{H}) ; m / z 418$ (Found: C, 57.8; H, 5.4; $\mathrm{N}, 6.9 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 57.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 6.7 \%$).

Compound $7 \mathbf{p}$. Pale yellow crystals, m.p. $214^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})(87 \%) ; v_{\max } / \mathrm{cm}^{-1} 3620-3180$ and $2216 ; \delta_{\mathrm{H}} 1.56(2 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{CH}_{2}\right), 1.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 2.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.99(2 \mathrm{H}, \mathrm{t}$, CH_{2}), 2.37-3.80 ($6 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}, 5^{\prime}-, 4^{\prime}-, 3^{\prime}-$ and $\left.2^{\prime}-\mathrm{H}\right), 4.55$ $\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{OH}\right), 4.99\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{OH}\right), 5.41\left(1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\right.$ $\mathrm{OH}), 5.61\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 10.10,1^{\prime}-\mathrm{H}\right), 7.28(1 \mathrm{H}, \mathrm{t}, \mathrm{ArH}), 7.60$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.07(1 \mathrm{H}, \mathrm{t}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 21.5-33.1\left(4 \times \mathrm{CH}_{2}\right)$, 60.2 (C-6'), 68.2 (C-4'), 68.6 (C-2'), 74.8 (C-3'), 79.6 (C-5'), 83.8 (C-1'), 105.3 (C-3), 114.9 (CN), 123.8-132.9 (Ar carbons), 152.2 (C-5), 156.6 (C-6), $156.7(\mathrm{C}-4)$ and $161.5(\mathrm{C}=\mathrm{S}) ; m / z 478$ (Found: C, 65.4; H, 5.5; N, 6.2. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires C , $65.3 ; \mathrm{H}, 5.4 ; \mathrm{N}, 5.9 \%$).

References

1 M. Legraverend, Z. C. Nguyen and E. B. Aurelio, Nucleosides Nucleotides, 1986, 5, 125.
2 G. E. H. Elgemeie, H. A. Regaila and N. Shehata, J. Chem. Soc., Perkin Trans. I, 1990, 1267.
3 G. E. H. Elgemeie, A. M. Elzanate and A. K. Mansour, J. Chem. Soc., Perkin Trans. I, 1992, 1073.
4 G. E. H. Elgemeie, A. M. Elzanate and A. K. Mansour, Bull. Chem. Soc. Jpn., 1993, 66, 555.
5 G. E. H. Elgemeie, N. M. Fathy, L. M. Faddah and M. Y. Ebeid, Arch. Pharm. (Weinheim), 1991, 324, 149.
6 G. E. H. Elgemeie and B. A. Hussein, Tetrahedron, 1994, 50, 199.
7 G. E. H. Elgemeie, H. A. Elfahham and R. Mekhamer, Sulfur Lett., 1988, 8, 187.

Paper 3/07517F
Received 22nd December 1993
Accepted 13th January 1994

